DISTRIBUTION STATEMENT A
Approved for public release;

DTIC
ELECTE
0EC 23 1981




——

SYMMETRIC COMPLEMENTATION*

John H. Reif

Avall and/ap

Digt Speata)

i

|_Aveilability codeg |

P e ey
Pgocossion For

NTIZ  CRAaI W
DTIC TAR []
Unanaounged )
Justirioation.‘.*, —
— T
By  _
p,g,sgribuuon/

[

*This is a revised version of

space and parallel time (for min spanning trees,
planarity and other symmetric games,"

TR~07-81

DTIC

ELECTE
DEC 2 3 1981

D

"0(log N) algorithms in sequential

k-connectivity,
DISTRIBUTION STATEMENT A
Approved for public release)
Distribution Unlimited

AT ————— A e o

PR

s

L g m——

S




1
!
|
i
}

[ i

Unclassified s
STLURITY CLASSIFICATION OF THIS PAGE (When Nata Entered)

REPORT DOCUMENTATION PAGE ORE COMBLETING b

REFORE COMPLETING FORM

2. GOVT ACCESSION NOJ 2. RECIPIENT'S CATALOG NUMBER

ALOB 3D

l

7. REPORT NUMBER
AD

4. TITLE (and Subtitle) 8. TYPE OF REPORT & PERIOD COVERZED
Symmetric Complementation Technical ,Report
s. naronumo’nc. REPORT NUMBER
TR-07-81
7. AUTHOR(s)

8. CONTRACT OR GRANT NUMBER(e)

John H. Reif NO0014-80-C-0647

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
A . AREA & WORK UNIT NUMBERS

Harvard University
Cambridge, MA 02138

t). CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research 1981
800 North Quincy Street 13. NUMBER OF PAGES
Arlington, VA 22217 42

. MONITORING AGENCY NAME & ADDRESS//! dilferent from Controlling Oltles)

1. SECURITY CLASS, (of thin report)

same as above

T8a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)
unlimited

DISTRIBUTION STATEMENT &

Approved for public releass;
v____?is_gr_ib‘qji_on Unlimited

V7. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, Il dillerent {rom Report)

unlimited

18, SUPPLEMENTARY NOTES

19. KEY WORDS (Continue vn reverse aide Il necessary and identily by block number)

parallel algorithm, planarity, connectivity, symmetric computation,
probabilistic algorithm, randomized algorithm.

20. ABSTRACT (Continus on reverse elds Il necessary and identily by block number)

See reverse C T -

Bl 12 22 116

DD . S5%, 1473  eoimion oF 1 Nov 68 1s ovsoLETE
S/N 0102-014- 6601 |

SECURITY CLASSIFICATION OF THIS PAGE (khen Data Rntersd)

CVI

.

e T—

W

UG




. A s
chlLHHITY cEAssmcnncu OF THIS PAGE/When Data Bntersd) ’

r—
Swnnary. %his paper introduces A class of 1 player games of perfect

20,

information, which we call complementing gamnes; the player is allowed
moves which complement the valuc of successive plays. A complementing
' {- game is syrmetric if all noncomplament moves are reversible (i.e., form a
symmetric reiation). These games are naturally related to a class of
machines we call aymmetric complementing machinea. Symmetric nondeterministic
machines were studied in ([Lewis and Papadimitriou, 80]; they are identical to
; our symmetric complementing machihcs with complement moves allowed only on
| termination. (A companion papur to appear will describe the computational
complexity of symmetric complementing and alternating machines.) Of
particular interest is the complexity qlass(\i&CSYMLOG, which contains the
E&Jr{\f outcome problem of symmctric complementing games with constant
complement bound with game positions encoded in log space, and next move

relations computable in log space. We ghow that the decision prohlem for

a restricted quantified Boolean logic @QB@{:.S complete in _Q{CSYMLOG.
. \\ - 5(4"",\

We also show that _gaCSYMLOG contains many well-known and common combina-

torial problems: —,

(1) . minimum spanning forests.’

1 ‘ (2) k-connectivity and k-connected components,

and also the recognition problems for many classes of graphs:

'
7

(3) ° planar graphs of valence 3°
{4) chordal graphs -

(5) * comparability graphsiﬁ

(6) interval graphs -

(7) split graphs

(8) permutation graphs. . _. ~

L (cont. on next page)

<

Unclagsifieq

SECURITY CLASSIFICATION OF THIS PAGE(#hen Dats Entered)

ue:

— . —— - .
Ayt D Y P I il ) g pal I, R . - ot LT S LI owae - . .
B i T o oo h . AP SR ‘ BT e g P 5k

P

R

LAWY

e 8., i A P - T

S




20. Abstract (cont.)

We present a probabilistio algorithm (this is an algorithm which makes
probabilistic choices [Rabin, 74), but with no assumptions about the
probability distribution of the inputs) for recognizing the languages of

I,CSYMLOG within space 0(log({n)) and simultancous time no(l), with

error probability <& for any given €,0<e€<1. As a consnrguence, problems

(1)-(8) can be done probabilistically in space O(log(n)) and within
simultancous polynomial time. The best previous known algorithms for
problems (1), (2) and (3) required dcterministic space Q!logzn) (Ja'ga’
and Simon, 79], and algorithms for problems (4)-(8) previously required
space f{I(n).

Also, we give a probabilistic parallel algorithm (which employs the
Hardware Modification Machines of [Cook, 80), with probabilistic choice)

for recognizing the languages of L, CSYMLOG within parallel time O{log n)

and error probability <€, for any given €, 0<e€<1l. Thus wealso have parallel

time O(log n) algorithms for problems (1)-(8). Our parallel algorithms
seem practical since they require cnly a small polynomial number of
pProcessors. The best previously known parallel algorithms for problems
(1)-(3) required parallel time Q(logzn) (Ja‘Ja' and Simon, 80} and we
know of no previous parallel algorithms for problems (4)-(8). Furthermore,

we show (by a nonconstructive toechnique) that for cach input length n220,

the probabilistic choice can be eliminated in both our scquential and parallel

algorithms. This docs not affoct the efficiency of the algorithms, but
makes our algorithms nonuniform (i.e., we have a different algorithm for

each input length).
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Summary. This paper introduces a class of 1 player games of perfect
information, which we call complamenting gameg; the play=r is allowed
moves which complement the value of successive plays. A complementing
game is syrmziric if all noncomplement moves are reversible (i.e., form a
symmetric relation). These games are naturally related to a clasa of
machines we call symmetric complementing machines. Symmetric nondeterministic
machines were studied in [Lewis and Papadimitriou, 80]; they are identical to
our symmetric complementing machines with complement moves allowed only on
termination. (A companion paper to appear will describe the computational
complexity of symmetric complementing and alternating machines.) Of
particular interest is the complexity class I, CSYMLOG, which contains the
outcome problem of symmetric complementing games with congtant
complement bound with game positions encoded in log space, and next move
relations computable in log space. We show that the decision problem for
a restricted quantified Boolean logic ZI,QBF® is complete in I, CSYMLOG.
We also show that I CSYMLOG contains many well-known and common combina-
torial problems:

(1) minimum spanning forests

(2) k-connectivity and k-connected components
and also the recognition problems for many classes of graphs:

(3) planar graphs of valence 3
(4) chordal graphs

(5) comparability graphs

(6) interval graphs

{7) split graphs

(8) permutation graphs.
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We present a probobilistic algorithm (this is an algorithm which makes
probabilistic choices [Rabin, 74], but with no assumptions about the
probubility distribution of the inputs) for recognlzing the languages of
Z,CSYMIQOG ‘wi't.'h:i'n space O(log{n)) and simultaneous time nO(l)' with
error probahility <& for any given €,0<€<1l. As a consequence, problems
(1) -(8) can be done probabilistically in space 0(log(n)) and within
simultaneous polynomial time. The best previocus known algorithms for
problems (1), (2) and (3) required deterministic space Rllogzn) Ja'Ja’
and Simon, 79], and algorithms for problems (4)-(J) previously required
space {(n).

Also, we give a probabilistic parallel algorithm (which employs the
Hardware Modification Machines of [Cook, 80], with probabilistic choice)

for recognizing the languages of I,CSYMLOG within parallel time 0(log n)

and error probability <€, for any given €, 0<€<1l. Thus wealsohave parallel

time O(log n) algorithms for problems (1)-(8). Our parallel algorithms
seem practical since they require only a small polynomial number of
processors. The best previously known parallel algorithms for problems
(1)-(3) required parallel time Q(logzn) [Ja'Ja' and Simon, 80] and we

know of no previous parallel algorithms for problems (4)-(8). Furthermore,

we show (by a nonconstructive technique) that for cach input length n#0,

the probabilistic choice can be eliminated in both our sequential and parallel
algorithms. This does not affect the efficiency of the alyorithms, but

makes our algorithms nonuniform (i.e., we have a different algorithm for

each input length).
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1, INTRODUCTION

In the previous decade, considerable success has been made in the
design of time optimal segquential algorithms for many combinatorial problems
on graphes (such as spanning trees, k-connectivity for k=1,2, and 3
[Hopcroft and Tarjan, 73b) and planarity testing (Hopcroft and Tarjan, 73al)
using the technique of depth-first search. Also, breadth-first search has
been used fbr optimal algorithms for other graph problems. ' By applying
well-known simulation results (for example, (Fortune and Wyllie, 78]), we
can derive parallel space optimal algorithms from these sequential time
optimal algorithms. Also, parallel time has been related to sequential
space (by the simulation results of [Fortune and Wyllie,. 78] and ([Dymond
and Cook, 80], for example). It is intriguing therefore to ask:

(i) 1Is there a general graph search technique which yields optimal
sequential space algorithms and (either by simulation results or directly)
also yields optimal parallel time algorithms?

We require that these algorithms be reasonable: that a seéuential

algorithm with space bound S(n) uses noc mcre than 20(S(n))

0(1)

sequential
time (note that if S(n) =0(log n) then n
and that a parallel algorithm with time bound T(n) use no more than

20(T(n)) processors (again, note that T(n) =0(log n) impiies no(l)

processors Wwill be used). (Note that certain probabilistic TMs have a time

bound doubly exponential in these space bound and are there for not reasonable).

The depth-fir-t search and breadth first search techniques appear not
to be applicable to (i), due to their sequential nature. Aanother possible
techrique for solving a graph problem is to efficiently reduce the problem
to booleap transitive closure, for which there is a knawn .ﬂ(logzn)

parallel time algorithm [Csanky, 76). [Ja‘'Ja‘' and Simon, 80] apply this

AR T e % e 3
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teclnique to do planarity testing and to solve connectivity problems in

n(loqan) parallel time. (However, boolean transitive closure hus no known
algorithm with less than Q(logzn) parallel time bound, and this bcund

seems very difficult to improve, whereas we show hcte‘the planarity testing and ‘
connectivity problems actually have O(log n) probabilistic parallel time algorithms.)

A related problem ia:

(ii) 1Is there a logic, in which a significant class of combinatorial
problems may be succinctly expressed, and such that validity of sentences in
the logic may be decided efficiently or even optimally? (with respect to
sequential space or parallel time)

A logic satisfying the conditions of (ii) could be used as the kernel
of a language for parallel programming, where programs may be "compiled"
into time optimal code for parallel machines.

This paper proposes solutions to (i) and (ii). A space efficient
sequential probabilistic search technique was first introduced by
[Aleliunas, Karp, Lipton, Lcvasz, and Rackoff, 79] to test l-connectivity.
We generalize the probabilistic search technique to yield optimal
algorithms (in sequential space and alsc parallel time) for the complexity
class I ,CSYMLOG, which contains a larce class of many important combina-
torial problems. Furthermore, we propose a restricted quantified boolean
logic L, QBF® as a solution to (ii).

This paper is organized as follows:

Section 2 defines complementing games and machines, complexity
notation. Section 3 provides a sequential decision algorithm for the
problems of L CSYMLOG, which runs in probabilistic space O(log n), and

can be modified to run in nonuniform deterministic space O(log n).
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Section 4 gives a probabilistic parallel algorithm which can simulate any
sequential space S(n) bounded probabilistic computation within parallel

time o(sS(n)). We also show in Section 4 that we can eliminate probabilistic
choices in our parallel algorithm, without degrading its running time, but
introducing nonuniformity. Section 5 introduces our logic I QBF® and

shows its invalidity problem is complete in I ,CSYMLOG. We also show in
Section 5 that various combinatorial problems (including minimum spanning
trees, k-connectivity and graph recognition problems such as valence 3 planarity

testing) are in I CSYMLOG.

2. PRELIMINARY DEFINITIONS

2.1 Symmetric Relations

Let RcDxD be a relation on domain D. Let its inverse be
K ={(b,a)|aR b}. R is symmetric if R=R . R is deterministic if for

all a€D there is at most one bED such that aRb.

2.2 Complementing Games

A (1 player) ccmplementing game consists of a quadruple G= (P,w,l-,!-c)
where:
(i) P is the set of positions; P is assumed to be a set of
strings over a finite alphabet,
(ii) WcP are the winning positions,
(iii) rcpxP is the next move relation, and

(iv) r_cFr are the complement moves.
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Fix an inttial position poEP. A move is a pair (p,p') €. The
move (p,p') is an tnttial move (termination move, complement move)
it o (if »' has no next move, and (p,p') ch. respectively). We
assume there is no next move from any winn:l.né position.

Let complement game G be symmetric if L b=k is a symmetric
relation (see 2.1). Let |+ be log space if there is a deterministic log spacenext
move transducer which given any p€P, outputs {p'|p+p'l}.

Let a play be a maximal length sequence of positions po,pl....
where D is the initial position, and Py F Py for i=1,2,... {(we allow
a trivial play p,). For any finite k20, let Py have complement bound
k if any play from Pq has <k complements ignoring the initial move (ignoring
the initial move allows us to maintain the duality between Zk and 'n‘k) .

Suppose Pq has finite complement bound k. Let OU'!'COME(po) - ﬁg_\_l_g
if there exists a finite play prefix pg:Pys--- Py 420, with no complement moves
and where either p j €W or there exists at least one compiement move from
p:i and OUTCOME(p') -Eﬁ for each complement move (pj.p') €|-c. Otherwise
OUTCOME (p,) = false. The outcome problem for G  is given any p€P, next

move transducer for I+, and a recognizer for W, compute OUTCWME(p).

2.2 Machine Definitions*

Let a complementing (Turing) machine be a 9-tuple N= (E.I‘,b.t,Q.qerA.5.5c)

where

*See note at end of this paper on previous and equivalent machine
definitions for symmetric alternating machines.
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)3 is the finite inmput alphabet
r is the finite tape alphabet, with IcT
bET is the distinguished blank symbol,
t is the number of tapes where tape 1 is the input tape
Q is the finite state set
qOEQ is the in’tial state
Q,SQ are the uercpting states

2 . 2 t-1,2
Sc (9 x (Z°x {1eft,right}) x (2% x {left,righth ~ )

trangition relation

is the

Gcc:- § are the complement tvansitiong.

§ has a slightly nonstandard definition so that we can syntactically define
symmetric machines in a manner similar to [Lewis and Papadimitriou, 80].
Suppose transition ((q'alblml"”’atbtmt) ., {(q° ,a]'.bl'mi,ﬂ. "at':bt';mt.:) €8 is
taken. Then the previous state was q and the new state is q'. Each
tape i€{1,...,t} moves its head one cell in direction mi', and m, is
the reverse of direction mi. If mi =right then previously the head of
tape i was scanning symbol ai and "peeking" at symbol bi located one
cell to the right; in the new configuration these symbols aibi replaced by
symbols aibi and the head is gcanning symbol b:.'L. The case mis}_e_e_fi is
similar, except the head was previously scanning over symbol bi while
“"peeking" at symbol a; located one cell to the left; afterwards the head
is scanning symbol ai. We assume there is no transition from an accepting
state. Let M be symmeiric if noncomplement transitions Gs = §- Gc

are a symmetric relation. Let & be the configurations of M, defined in
the usual way for Turing machines. We may extend ¢ in the usual way to
the next move relation + € FxF. Let + S+ be the next moves which are

ccaplements. Note that if M is symmetric then the relation l—s=l-- il

R R A R

P

e e g—— e o

S




4

is symmetric. Let WS be the accepting configurations. GM= (J,w,i—,l-c)
is the computation complementing game of M.

Given an input string w€ ", we let the initial configuration Io(w)
be the initial position of G,. Computation sequences of M are plays of
G, from I, (w). Suppose M has a finite complement bound from Io(w) .

M
M accepts w if OUTCOME(Io(w)) =true. If M has only complement moves

‘which are terminations, than M is a nondeterministic machine; furthermore,

if k. is symmetric than M is a symmetric nondeterministic machine as

defined by [Lewis and Papadimitriou, 80]. Let L{M) = {w€2*|M accepts W}.

2.3 Complexity Classes

Let complementing machine M have gpace bound S(n) (complement
bound K(n)) 4if on any input of length n20, each computation sequence
has no more than S$(n) nonblank cells on ‘any work tape in each configuration
(less than K(n) complements on any computation seguence ignoring the
initial moves).
Note that nondeterministic and co-nondeterministic machines have complement

bound 1 (see 2.2) . "For notational simplicity, we define a complementing machine with

complement pound 0 to be a deterministic TM. Let «# be a class of
complementing machines. Let J//SPACE(S(n)) be the languages accepted by
those machines in «# with space bound S$(n). Let XK/IISPACE(S(n))
(Hk./({SPACE(S(n))) be the languages accepted by those machines in # with
space bound S(n), complement bound k and no complement moves (only
complement moves, respectively) for the initial moves. Let

L A(3PACE(S(n)) =Uk30 Xk./(SPACE(S(n)); that is the machines operate in some

constant number of complements, inucpendent of the input length.
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In the context of complexity classes, we let D denote the class of
deterministic T™s, let N denote the nondeterministic TMs, and let NSYM
be the symmetric nondeterministic machines, Let C b3 the complementi'ng'
machines and let CSYM be the symmetric comélementing machines, For

example, the complexity class NSYMSPACE(S(n)) = {L|L is accepted by a

symmetric nondeterministic machine with space S(n)} previously investigated

by [Lewis and Papadimitriou, 80). The complexity class Zx(n)CsyMSPACE(S(n)) =

{L|L is accepted by a symmetric complementing machine with space bound
S(n), complement bound K(n), and no complement initial moves} is of central
importance to this paper. For notatione;l simplicity, let NSYMLOG =
NSYMSPACE (log{n)), and CSYMLOG = CSYMSPACE({log(n)).

Let Ll <log L2 denote that language L. can be many-one reduced in

1

deterministic log-space to language L Let L, be <1og equivalent to

2"
Let L

1

L, if L, <log L, and I, <log L;- , be eomplete in a family of

languages £ if L2€..\Z’ and L, élog L, for each L, €Z. Note that if S(n) 21logn,
Ll<1°g L,, and LZECSYMSPACE(S(n)) , then LIECSYMSPACE(S(n)), by Proposition 2.3.

2.4 Preliminary Results for Symmetric Complementing Machines

It follows immediately from our definition of complementing machines

that:

PROPOSITION 2.1. For any LcI*, LE ):K CSYMSPACE(S(n)) iff

(n)

I*-LE IIR CSYMSPACE(S(n)) .

(n)

Since any complementing machine has a finite tape alphabet, it is easy

to show

PROPOSITION 2.2, If complementing machine M has space bound

S§(n) #log n, then M has complement bound 20(8(")).
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[Lewis and Papadimitriou, 80) show DSPACE(S(n)) € NSYMSPACE(S(n)).
; Also, since any symmetric complementing machine is a complementing

marhine:

PROPOSITION 2.3, DSPACE(S(n)) < I

CSYMSPACE(S(n)) € L CSPACE(S(n)).

K(n) K(n)
(Note that space bounded complementing machines accept the same languages as
spacé-bounded altevnating machines and that complementiag machines without space
bounds accept some not r.e. languages but that is not relevant to this paper.
Further properties of symmetric complementing 2nd alternating machines will

appear in a companion paper, but are not requiréd for the results of this

paper.,)

3. A SPACE EFFICIENT DECISICN ALGORITHM FOR SYMMETRIC COMPLEMENTING MACHINES

We give a 0(S{n)¥(n)) space sequential algorithm for recognizing the
languages of zx(r) CSYMSPACZ(S(n)). The algorithm is propabilistic (see
3.1 and 3.2), though we show it can be made determiaistic by introducing

i nonuniformity (see 3.3).

3.1 Probabkilistic Sequential Machines

We define a probabilistic TM to be a multitape deterministic Turing
Machine PM with a special read-only, one-way tape (distinct from the input
and work tapes) containing an infinite binary sequence. The contents of
this. "random bitvector" tape are chosen randomly on each exccution of PM.
Let I be the input alphabet of PM and let LEZ*. For any €(n),

} 0<e(n) <1 say PM recognizes L within error €(n) if for all wez",

| mm———
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w L implies Prob(PM accepts w) #1-¢e(n).

i e

w@fL implies Prob(PM accepts w) <e(n).

To justify this definition, we note that Adleman's [78] definition of
acceptance of probabilistic machines is similar to ours, except €(n) =1/2
in Cl1 and he strengthens condition C2 by requiring that wg€L imply PM
does not accept ® on any probabilistic choice. Many probabilistic algo-
rithms in number theory satisfy this more restrictive property, but it is
too restrictive for many of the applications in this paper. On the other
hand, Gill [77] defines accepta.ace of probabilistic machines with the max of
the error of acceptance and rejection less than 1/2.

Note that a probabilistic machine may not be reasornable in the sense
defined in the introduction (since Gill [77] gives a probabilistic machine
with space bound S(n) and expected time bound 220(S(n))); however, the
probabilistic machine implementing the PROB-SEARCH algorithm of Section 3.2

will be reasonable.

3.2 Probabilistic Simulation of Space Bounded Symmetric Complementing

Machines

We shall show:

THEOREM 3.1. For any ¢(n), 0<e(n) <1, there is a probabilistic TM

which recognizes LE€EL CSYMSPACE(S(n)) within given error €(n) and

O(S(n)))K(n)

K(n)

space O(X(n)(S(n) +log d(n))) and time (d(n)2 » where

d(n) =K(n) (0(s(n)) +log(0(K(n))) - log €(n).
Note that if &(n) is constant, then by Proposition 2.2, we require

space O(K{(n)S{n)) and time ZO(K(")S(n)). Thus:

P At can e Rt B it - e N N
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COROLLARY 3.1. For each constant €, 0<e<1, and LE€ZI, CSYMLOG,
there is a probabilistic TM which recognizes L within error € and

simultaneous space O(log n) and time no(l).

Although Theorem 3.1 suffices for our applications, we also show its

space bounds can be improved.

THEOREM 3.2. For each L€I CSYMSPACE(S(n)), there is a probabi~

K(n)
listic TM which recognizes L within error é'(n) and space

O(K(n) (s(n) + log(5(n) +log d(n)))).
Our probabilistic search technique wiill utilize the following result:

LEMMA 3.1. [Aleliunas, Karp, Lipton, Lovasz, and Rackoff, 79]}. Let
Ge= (V,E) be any undirected, connected graph. Let r be a random walk in
G from any vertex V€V be constructed from trivial path v by repeatedly
extending the front end of r by adding a random edge of E which is
connected to the current front end vertex of r. Let r be a random walk

of length 2|E|(|v]|~1). Then Prob(r visits all vertices in V) >1/2.

[Lewis and Papadimitriou, 80] observe that this Lemma immediately
implies a space 0(S(n)) probabilistic algorithm for NSYMSPACE(S(n)). A
gencralized probabilistic search technique is used here to decide acceptance
of symmetric complementing machines.

We now prove here Theorems 3.1 and 3.2, Let M be a symmctric com-
rlementing machine asn defined in Scetion 2.2, We assume M has complement
bound K(n) 21 and constructible space bound S(n) 2log n (otherwise, we

use the standard technique of trying 8(n) =log n, 1+1log n,... to the
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construction given below), Let & be the set of vonfiguration of M and

let WC JF be the accepting configurations. Let F be the next move relation

of M. Let l-c, b—s € I be the complement and noncomplement moves of I,

respectively. Fix some n#0. Let J' cf be the cenfigurations which have

€S(n) nonblank cells on each work tape.

We define a recursive procedure which takes as input a configuration

1€ 4 Aalso, the procedure has a global variable t (which determines

the procedure's probability of success;.

procedure PROB-SEARCH (I)
local integer i, set COMP
i+0
‘while i€t do
if I is accepting then return true
coMP « {I'€S' I +_ 1'}
if CoMP#¢ then

if PROB-SEARCH(I') = false for all I'€COMP then
return true

choose a random I' from {I'€S|I ko 1'}
I+«1'
i+ i+l
end
return false

end

For each k, 1€k<K(n) let -9;‘5 J' be the configurations which also
have complement bound k.

Let € be the max probability that PROB-SEARCH((I) = false for
’ .

any IEJk such that OUTCOME(I) = true. Let Ek be the max probability

't

e

— ‘-mm ol a5 - = KT SR e s e

. e
[N Y

el A v



Tt - qppatg——s—

~14-, 4

that PROB-SEARCH (I) =true for any I€ § such that OUTCOME(I) = false.

Thus, €.t and Ek ¢ are the worst case error probabilities for
’ ’

rejection and acceptance, respectively.

LEMMA 3.:.. There are constants b,c#1, dependent only on M, such 1

|
that for any d#21, k21, :
- -4 k-1
9
m“(ek,t'ek,t) € k2 (tb)
where t=2dcs(n).

Proof. Let k! =(J' xg') ﬂr-s. Since M is symmetric IJ‘,I-;) is an
undirected graph. There exists a constant b#1 upper bounding the
number of next configurations {I'|I k I'} possible from any given

configuration I. Also there exigts a constant cl>l such that

'J'Igci(n) S(n)

. Thus there exists a constant c2>0 such that IO-;I Scz .

Let c=c;'c, S0 t»24|s | |l-;|.

For each pair of configurations I, I' €.9l'( for which there is a non-
complementing computation sequence from I to I', by Lemma 3.1, we have
prob(r visits I')21- Z-d for a random walk r in (Jk. k;) starting
at I and of length 2d|.7'| Il-él

Now we prove Lenma 3.2 by induction on k. For k=1 we show

- -d
max(é:1 t'el t) €2 7. The worst case error probability for rejection and
[4 ’

acceptance from any I€.¢1 with no complement next move is <2-d and 0, : ‘

respectively. Thus the total worst case error probability for rejection and

acceptance from any I€(Il is ~<2~d and €2, rospectively.
Since there at most tb direct calls to PROB-SFARCH during a single L
l}

execution of the body of the PROB-SEARCH procedure, for k> 1 we have:
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-d . .
€ <2 +tbek_ and € <tbtk”

k,t 1 k,t l *
By the inducticn hypothesis,
- Y. | k-2
max(ek_l't,ek_l't) € (k=1,2 " (tb) .
Hence
max (€ ) €27% we
k,t' k't k-l
< 2794 (k-1 27 (e X2
< x2 %) kL . o

Let L be the language accepted by M. Suppcse we are given some
error function e(n), 0<eg{n) <l. Let PM be the probahilistic TM which

on input we€z®, computes PROB-SEARCH (Io(w)) and accepts iff tha

t{n)

result is true, provided that d(n) =K(n)log(t(n)b) - log €(n) and t(n) = 2d(n)cs(n) .

(Note that both d(n) and t(n) are decreasing functions of ¢e(n).)

By Lemma 3.2, PM recognizes L within error ¢ S ¢(n). Furthermore,

X(n)
PM has time bound O(t(n))x(n)==(d(n)zots(n)))x(n) . PM has space bkound
O(K(n) (S(n) +log d(n))) since we must store b=0(1l) configurations

of size 0(S(n)), and a "time counter® requiring space log t(n) =0(S(n) +
log d(n)), to implement each of the K(n) recursive cells. Thus we have

proved Theorem 3.1. a]

Although Theorem 3.1 is good enough for our applications to I, CSYMLOG,
it is nevertheless interesting to observe that we may decrease the space
bound by using a trick due to Gill [77]. To avoid storing the "time
counter" in the procedure PROB-SEARCHt, we instead sample a random bit on

each iteration of the while statement. If at any time there have been
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log t consecutive r .ro's chosen, thenlwe immediately exit the while
statement. This test replaces the test (i€t) in the original text of
PROB-SEARCH_. To achi. /e error Ex(n) €e(n), we must only increase d(n)
by a factor of 1/(l-log exp(l)). Only O(K(n)(S(n) + loglog t(n))) =
0(K(n) (s(n) + log(S{n) +log d(n)))) space is required by this method (but
note that we no longer have a time bound . Thus we have proved

Theorem 3.2. (]

3.3 Eliminating Probabilistic Choices

Let a nonuntform detsrmirnigtic TM be a deterministic TM augmented
with a special read-ouly tape, called the advice tape, whose contents are
fixed for all inputs of the same lergth n, but which may have different
contents for distinct input lengths n and n'., (Neither the input tape
nor the acdvice tape is considered in tne space bound of this machine.)
This nonuniform machine has adviee bound A{n) if on inputs of length n,
the advice tape nas A(n) cells (see [Karp and Lipton, 80]). We will

show:
THEOREM *.3. Each LGE,,(‘\) CSYMSPACE(S(n)) is accepted by a nonuni-
form deterministic TM within space bound 0(X(n)S(n)), time bound

20(K(n)s(n)) . and advice bound 20(S(n)).

COROLLARY 3.3. Each LEZI, CSYMLOG is accepted by a nonuniform deter-

. o1
ministic TM within simultaneous space bound O(log n), time bound n )

and advice bourd no(l).

We now prove Thecrem 3.3, We require a technical graph theoretic

result.
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Let G= (V,E) be a undirected regular graph, with valence b. We
assume G has a fixed adjacency list representation, so for each vertex
v we have a list A&(v) of vertices adjacent to v. Given a string
vE{1,...,b}*, and a vertex v, let U(G,v) be the path v-vo....,vlcl
such that v, is the U(i) element of list £(vi_1) for i=2,...,|0].
Let.-. gn,b be the class of all undirected, regular graphs with €n
vertices and valence b. Let U€{1,...,b}* be (n,b)-universal if for
each graph GGQ‘,"b and each vertex v of G, U(G,v) visits all the

vertices of G.

LEMMA 3.3. [Aleliunas, Karp, Lipton, Lovasz, and Rackoff,79] For
each b3 1, there is a c(b) such that for each n20 there is a (n,b)-

universal string Un of length <c(!:~)n3 log n.

+b

Let M be a symmetric complementing machine of Section 3.2 with
complement bound X(n), and space bound S(n). Let (%', i—é) be the
undirected graph of valence b defined in the Proof of Lemma 3.2. Clearly we
can add redundant transitions so that (', l-;) is regular with valence b. Let
NONUNIFORM-—SEARCHt(I) be the deterministic procedure derived from PROB-SEARCH, (I)
of Section 3.2 by using the (|#'|,b) -universal string UL"Iob in place of
probabilistic choice, for choosing the configurations to be explored in (g' ,l-;) .
By the Proof of Lemma 3.2, there exists scme cl>1 such that
loe | < cf_(n) . Let t(n) =c(b)(S(n)log cl)cis (n) . Then Lemma 3.3

imnediately implies
LEMMA 3.4. For each input string w€ Zn.

NONUNIFORM~SEARCH, (T (w) = true iff M accepts u.

(n)
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This procedure may be implemented by a nonuniform deterministic T with

4 t(mKMaD XIS (R)

space bound O(K(n)S(n)), time boun , and advice : !

L0ts(n)

bound t(n) = . Thus we have proved Theorem 3.3. a

4. A PARALLEL ALGORITHM

4.1 The Hardware Modification Machine

Our parallel machine model is the Hardware Modification Machine (HMM)
of [Dymond and Cook, 80] (through we consider probabilistic and nonuniform
variants of it below). The HMM was invented ag the parallel analog of the
storage modification machine of [Schonhage, 79]. The HMM seems to be the
simplest possible parallel machine with modifiable storage structure, and
the HMM can be simulated within real time, with the same number of pro-
cessors, by many other such parallel machines, including the P-RAM of
[Fortune and Wyllie, 78] (this P-RAM model was assumed for the parallel
graph algorithms of [Ja'Ja' and Simon, 80]), the PRAM of [Savitch and
Stimson, 79}, and the SIMDAGs of [Goldschlager, 7R].

Intuitively, a HMM consists of a finite collection of deterministic
finiic state machines which we call processors. The state transition
function of these processors are identical. Each processor also contains

the same fixed, finite number of input and output connections for trans-

mission of values, from a finite alphalet, between processors. On

cach step (the state transitions of the processors are synchronous) a

processor will recad the values of its input connections which were set by

its neighboring processors on the last step, and write new values on each ‘
!

of its output connections, (only one process is associated with each output




connection), and enter a new state. 1In addition, a procesuor may reconnect
any input connection to any machine which can be reached by a path of
length €2 from the previous input connection. Also, a processor may
reconnect an input connection to a new proceasor (with the same finite
state control, initialized in some given state and with input connections
directed to its creator).

Given an input string WEZ", we assume the initial configuration of

the HMM consists of a chain of n+l identi:al processors PP,, PPl.....PPn

0
each in the same initial state, and each with input connections connected

back to itself, except each PP, , for 0<i€n, has a distinguished input
connection to PPi where the value output by PPi
the input string w. (This initialization scheme is somewhat simpler than

is the i-th symbol of

that defined by [Dymond and Cook, 80}, but yields the same technical results
of interest here.) The HMM accepts w if PP, ever enters a distinguished
accepting state qA.

The time bound T(n) (processor bound P(n)) of the HMM is the
maximum number of steps (processors, respectively) takern on any accepting
computation for any input of length n. Senerally we assume the HMM is
uniform: the processors have the same finite state transition function for
all input strings. However, we consider in Section 4.4 nonuniform HMMs
which must only have the same finite gtate trangitions for all input strings
of the same length. The advice bound A(n) of a nonuniform HMM is the
number of tuples defining the processor state transition function for

input of length n.
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4.2 The Probabilistic HMM

In addition to the above of a uniform HMM, suppose we allow each
processor PP, probabiligtic chotoe by providing a special read-only
register ry which is set randomly to O or 1 each step. Let PPM be the
resulting prolabilistic HMM. PMM recognizes language uvCI* within error

€(n), 0€€e(n) <1, if for all w€ZL",

Cl: wE€L implies Prob{PPM accepts w}?1-e(n)

C2: wfL implies Prob{PPM accepts w}<e(n) .

(Note that the conditions Cl, €2 for probabilistic recognition are identical

to those given in 3.1. [Reif, 81] gives complexity bounds tfor various other
probabilistic parallel machines and for both the [Adleman, 78) and also the
[Gill, 77) definitions of probabilistic acceptance; if Adleman's definition
of acceptance is used, than we can eliminate probabilistic choice in our
parallel machines by introducing nonuniformity without any increase in
parallel time; on the other hand if Gill's definition of probabilistic
acceptance is used, then we show that probabilistic parallel space S(n)

contains parallel space S(n) with nondeterministic choice.)

4.3 Parallel Simulation of Probabilistic Sequential Computations

[Dymond, and Cook, 80) prove that

THEOREM 4.1. If LEDSPACE(S(n)) for S(n)#21log n, then L is
recognized by a (deterministic) HMM in simultaneous parallel time bound

0(S(n)) and processor bound ZO(S(n)).

We generalize their results to probabilistic computations.
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THEOREM 4.2, Let PM be a probabiligtic TM with
space bound S(n) 2logn and time bound T(n). Suppose for some £(n),
0<e(n) <1, L_C_E* is recoénized by PM within error #(n). Then there
is a probabilistic HMM which recognizes L within error £(n) and with
0(s(r) + log T(n)) parallel time and utilizes T(n)-zo(s(n)) processors.

Furthermore, this HMM is uniform.

Proof. Fix some input string w€ £? and let Io(w) be the initial
configuration of PM. Let ' be the configurations of PM ' using <€S(n)
tape cells. Clearly there exists a constant ¢>0 such that !Jf'lécs(n).
We assume S(n) and T(n), are constructible (otherwise we must in
parallel use a diagonalization of S$(n)=0,1,..., and T(n)=0,1,...).

Our simulating probabilistic HMM, which we call PPM, will utilize a
processor PPI,t for each t, 0<t<T(n) and IE€F. The
can be created in binary tree fashion within 0(log(T(n)|#'])) time.
Each processor PPI,t chooses a configuration I' randomly fgom those
allowed from configuration I by PM. PP then makes a distinguished

It

Jump connection to processor PPI, t4l® These connections can be made in
14

time O(log(hf")). again using binary trees for indexing. Thereafter,
each process PPI,t repeatedly connects .ts jump connection to that which
was its jump connection of distance 2 in the previous step. These steps
are executed synchronously by all the processes, and the HMM is allowed
to halt and accept only when process PPIO(u),O has a jump connection to
a process PI,t where I is an accepging configuration of PM.

Suppose IO' Il"" is an execution sequence of M, with particular

probabilistic choices r. Suppose also that the RAMs of PEM make

particular probabilistic choices f‘, such that PP initially sets its

It't
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jump connection to process PPIt+1,t+l for t=0,1,...,T(n)-1, Then it is

easy to verify that PPM accepts W (when making probabilistic choices

r') iff PM accepts W (when making probabilistic choices r). Since r

and r' are chosen randomly, it follows that

Prob{PM accepts w} = Prob{PPM accepts w} .

Furthermore, if PPM ac.epts w, then there is a path PPI o,PI AR
14 ll
P induced by the initial jump connections such that I.(wW)=1I,.,7.,...,I
It 0 0’71 t
is an accepting computation of M, and t€T(n). On each iteration, this

path's length decreases by a factor of 1/2. Thus, PPM accepts within

parallel time

O(log(T(n) [#'[)) = 0(log(T(n2°™)yy - o(s(n) +10g T(n)) . D

Combining Theorems 3.1 and 3.2, we have:

THEOREM 4.3. For any §S(n) 2log n, K(n) 21, and for each €(n),

O0<eg(n)<l and LEZ CSYMSPACE(S(n)),

X (n) there is a probabilistic HMM

which recognizes L within error ¢€{n), with parallel time bound

O(X(n) (5(n) + log d(n))) and processor bound (d(n)20(s(n)))x(n) where

d(n) is defined as in Theorem 3.1.

Note that if ¢€(n) is constant, then HMM has parallel time bound

O(K(n)S(n)) and processor bound ZO(K(n)S(n)) + Thus:

COROLLARY 4.3. For each constant €, 0<e<1l, and LE I CSYMLOG,

there is a probabilistic HMM which recognizes L within error & and

with parallel time O(log n) and no(l) processor bound.
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4.4 A Nonuniform Parallel Algorithm

By Theorems 4.1 and 3.3., we can eliminate probabilistic choice in

our parallel algorithm, by introducing nonuniformity.

THEOREM 4.4. For each LE€EZ CSYMSPACE(S(n)) with S(n)21log n,

K(n)
L is accepted by a nonuniform HMM with parallel time bound O(K(n)S(n)),
)
processor bound 2RSS 13 agvice bouna 20(S(M))

COROLLARY 4.4. Each LE€ZI,CSYIZOG is accepted by a nonuniform HMM

within simultaneous parallel time O(log n), processor bound no(l) and

advice bound no(l).

5. COMPUTATIONAL PROBLEMS IN I £CSYMLOG

5.1 Symmetric Complementing Games

ot o = e =

Let CSYMGAMES(S(n),K(n)) be the outcome problem for symmetric
complementing games with positions of plays (starting at an initial position
of size n) of length €S(n) complement bound K(n), log space next move relation

and log space recognizer for winning positions. By our definition of complementing
machines, we have:
THEOREM 5.1. For S(n)2?log n, CSYMGAMES(S (n),K(n)) is complete for

the languages accepted by symmetric complementing machines with space bound

S(n), and complement bound K(n).

COROLLARY 5.1. The outcome problems

U CSYMGAMES (log n,k) are complete for I, CSYMLOG.
k20
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5.2 QBF@®

Given a set X of boolean variables, let literals(X) =X U {-;xlx'e X u
{true,false}. Let CNF® be the set of boolean formulas consisting of a
conjunction of clauses, each clause consisting of the exclusive-or 2 @ 2'
of two literals £,%'. Note that £ & L' is equivalent to (%) @ (44").

{Jones, Lien, and Laaser, 76] and [Lewis and Papadimitriou, 80] show
CNF @ ‘unsatisfiability is complete in NSYMLOG. Let Z‘OQBF® and
M,QBF® be the truth values {true false}. Inductively, let I, QBF@
be the set of quantified boolgan formulas F of the form (SX)ClA ACm
where X 1is a set of bof.ean variables and each clause Ci is of either
form L@ L' or of the form RAvF' whexe £,2'€ literalgs(X) and P' is
a formula of Hk_lQBF@. Also, let IIkQBF® be the set of quantified
boolean formulas F of the form (VX)C]‘V va where each clause Ci
is of the form 2 @ L' or of the form LAF' where £,%'€ literals(X)
and formula F' must be in Z‘k_lQBF@. Let I, QBF® = Uk,>0 ZkQBF@.

Note that all variables are bound in QBF® formulas,

THEOREM 5.2. For all k=20, the invalidity problem for ZkQBFCB is

complete in ):kcsym.oc, and the invalidity problem for ILQBF® is

complete in HszYMLOG .

We prove here Theorcm 5.2, Our proof requires a technical Lemma.
This Lemma is an easy generulization of a result of [Jones, Lien, and

Laaser, 76) which characterized decidability of CNF® formulas.

LEMMA 5.1, Let F be a formula of ZRQBF®. F is invalid iff
there exists a sequence of literals 20,...,2j such that 2’0 ®© -121,...,

!’j-l ® 12j are equivalent to clauses of F and £o=-|9,j or both (1) and
(2) hold.
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(1) £0=true or R.OVP' 15 & clause of F where F' is an invalid

formula in Hk_lQBF(.. :

(2) R,J.=false or -‘lij" is a clause of F where F" 4is an invalid

formuia in Hk_lQBFQ .

It will also be useful to note that

PROPOSITION 5.1. If F is a formula of HkQBF@, then <F 1is equi-
valent to a formula F of EkQBFQ , where F is formed by switching the
quantification symbols V,3 and also switching the logical connectives

vV,A in F. So F 1is invalid iff F is valiad.

Proof of Theorem 5.2 by induction on k. I QBF® and Z'.OQBFe can
easily be shown complete in IIOCSYMLOG= ZOCSYMLOG=DSPACE(log n).

Suppose for some k#1 the Theorem holds for all k'<k. Let F be
a ZkQBF® formula of length n. To decide F, we play a symmetric com-
plementing game. Let the player begin by choosing a sequence of literals
!'O""’R'j such that 203121,...,2j_1®12j are equivalent to clauses of
F. Note that only the first literal and last literal need be stored, and
this requires 0O(log n) space. This choice sequence is reversible since
(Ei_l@-p?,i) = (Zi@-gli_l) . The player enters the accepting state (and thus
wing) if either 9,0=-12,j on both cases (1), (2) of Lemma 5.2 holds. This
may require deciding formulas F', F" of I[k_lQBFe. To do this, we allow
the player two simultaneous complement moves from the current position. 1In
these complement moves, we let the player test if both F' and F" are
invalid. By the induction hypothesis, these tests are in Hk_ICSYNLOG.
Thus the symmetric complementing game can be implemented by a symmetric
complementing machine with complement bound k and space bound 0(log n).

By Lemma 5.2, the player wins iff F is invalid. We have thus shown that

EkQBFQ invalidity is in ZkCSYMLOG.
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Now let M be a symmetric complementing machine with complement
bound k and space bound log n. Let "s be the nonccmplement moves

o M. For each k', 1€k'<k, let "k' be the set of configurations

of M with € log n nonblank cells per work tape and for which there

is a complement bound of k'. Let %’k, be the configurations of

Jk' which have a complement as a next move. By the induction

hypothesis we can assume for each I€@k_l a formula F'(I) of

Hk lQBFQ such that F'(I) is invalid iff OUTCOME(I') =false for each

complement move (I,I') from I.

For each IEJk we assume a distinct variable x Let

I'
X = {xI|I€Jk}. Let W' be configurations of M which are accepting and
have €log n nonblank cells per work tape. For each I€W', let 9q

be the formula Xy ® true. Thus 9y is true iff xI=false. For

each IE@k_l, let g; be the formula (-ncI)VF'(I). For each I€Jk

' =
and JE€W ka-l' let fI,J (true & "XI) A (/\I L 1. % ©® g )"gJ
ls,k 2 1 2
- x . .
where .-s,k l-sﬂ (.9;( Jk) . Thus (3X) fI,J is invalid iff there

exists a computation sequence Il" . .,Ij such that Il =1, I,=J

b
and OUTCOME (J) = true.

Now for each I€4 and JEW'U® | let x': be a new distinct
variable, and let f! be derived from € by substituting xJ,
I,J I,J I

for each instance of variable X1 for each 1I°' EJR. Let

o {9
X' = {xIIIEJk and JEW‘UQ’k_l}. For each I€&, let

= ] ] : s s
F(I) (3Ix*) AJGW'U‘(i_l fI,J' Clcarly F(I) 1is in ZkQBFQ and
furthermore, F(I) is invalid iff OUTCOME(I) = truc. Hence F(Io(w))

is invalid iff M accepts w,
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We have thus shown that the invalidity problem for ZkQBFQ is
complete in ZkCSYMLOG. By Propositions 5.1 and 2.1, the invalidity

problem for HkQBFQ is complete in HkCSYMLOG. o

5.3 k-Connectivity

Given a graph G= (V,E) and vertices u,v€v, let Xk-PATHS(G,u,V)
be the problem: are there k vertex disjoint paths from u to v? The

problem 1-PATHS is commonly called the UGAP problem.
THEOREM 5.3. UGAP is complete in NSYMLOG.

. Proof [Lewis and Papadimitriou, 80]. Given an undirected graph G
of n vertices with distinquished vertices u,v, we nondeterministically
traverse a path in G from u, and accept if the vertex v 1is reached.
This can easily be done by a nondeterministic machine in gpace 0(log n)
to store the currently visited vertex. But this nondeterministic machine
can be made symmetric since any edge can be traversed in both directions.

On the other hand, suppose M is a nondeterministic symmetric
machine with log n space boundly and input string wé€ Zn. Let £ be
the configurations of M, with space <1logn, let b, € FxF be the
nondeterministic moves of M, and let WCJ Se the accepting configurations.
We construct a undirected graph with vertices v= g U {If} where
I.f J, and edges E= {{I.I'}lIl-s I'}u {{I,If}IIl—I' for some I' €W},

Then M accepts w iff there is a path in (V,E) from I‘)(w) to I o

By Theorems 2.1 and 5.3,

COROLLARY 5.3. The complement of the UGAP problem is complete in

nn lCSYMLOG .
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THEOREM 5.4. For each k&1, k-PATHS is complete in NSYMLOG.

We also show that for each k > 0, the k-connected components recognition
problem for an undirected graph is in NSYMLOG.
By Menger's Theorem [Bondy and Murty, 77], for any graph G = (V,E) and

vertices u, v €V, k-PATHS(G,u,V) H(Vxl,...,x €V - {u,v})UGAP(G"',u,V)

k-1

where G' is derived from G by deleting vertices and all

xlp s e pxk_l

edges connected to these vertices. Thus we have a deterministic log space
reduction to UGAP, which by Theorem 5.3 is in NSYMLOG. Theorem 5.4
is thus proved.

lLet a graph G = (V,E) be k-connected if for all distinct vertices
u. v€V, there exists k vertex disjoint paths from u to v. We define
a k-connected component of G to be a maximal k-connected subgraph of G.
(Note: to facilitate planarity testing, [Mclane, 37] and others define
“tri-connected" components somewhat differently. However MclLane's components
are homeomorphic (i.e., derived by replacing paths, with internal vertices
of ralence 2, by edges) to the 3-connected components of our definition.)

By Menger's Theorem, any two k-connected components intersect at no
more than k-1 vertices. Thus some k vertices suffice to uniquely deter-
mine any k-connected component of -G. Let k -CC(G,x;{vl,...,vk}) be the

problem: is vertex x in the k-connected component of G determined by

'{vl,...,vk}?
COROLLARY 5.4. k - CC ig complete in NSYMLOG.
Proof. By Menger's Theorem,

k *CC(G.x,{vl,...,vk}) +*lé§2k k—PATHS(G,x,vi) .

Thus we may apply Theorem 5.4 a
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5.4 Minimum Spanning Forests

Here we show the HICSYMLOG contains the problem of recognizing an

edge of a (unique) minimum spanning forest.

et G = (V,E) be an undirected graph with a mapping W: E -»m+ labeling

the edges with distinct positive integers. Consider the following well knoun

greedy algorithm for constructing a minimum (weight) spanning forest of G:

Input graph G = (V,E) and edge weighting w.

[1] sort the edges E = {el,...,em} so that wle,) <wle, ) for

1+1
i = 1,...,“’("1.

[2] SFP+2
[3] for i =1 to mdo

if srUfe;} contains no cycles then SF+SFU {ei}

kerurn (v, Ssr).

Note that the minimum spanning forest output by this algorithm is wnique

for a fixed W (even though in general there may exist many spanning

forests of a given graph).

Let SPANNING-EDGE(G,W,e) be true if e €SF and false otherwise.

THEOREM 5.5. SPANNING-EDGE is complete in chSYHLOG

Proof. Let e = {u,v} be an edge of G = (V,E) and let Gg =

(v, {e* EElw(e') <wW(e)}. Then SPANNING-EDGE(G,W,2) “*-UGAP(Gg,u,v). The

result then follows from Corollary 5.3.
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5.5. Other Graph Recognition Problems Contained in 1T, CSYMLOG

Here we note that the recognition problems for many interesting and
commonly found classes of graphs (including chordal graphs, comparability
graphs, interval graphs, split graphs, and permutation graphs) are contained

in H1ASYMLOG. Our proofs use known characterization Lemmas.

Let G = (V,E) be an undirected graph. Let its complement be G={V,{{u,v}g
Efu,vEV}). We define here some graphs commonly found in the literature.
Each has a characterization Lemma which immediately implies by Corollary 5.3
its recognition problem is in HlCSYMLOG (by a deterministic logspace reduc-
tion to the complement of the UGAP problem). G is a chordal graph if every

cycle C of length >3 contains a chord (an edge connecting two nonconsecu-

tive vertices of ().

LEMMA 5.2, G is chordal iff for every vertex v€V and cycle C
of length >3, if C contains v then C has a chord {x,y} such that both b

x and y are of distance <£2 from v,
Proof. Repeatedly apply the chordal graph definition.

G is a comparability graph if its edges may be transitively directed.

LEMMA 5.3. |[Gilwore and Hoffman, 64) G is a comparability graph iff
for every cycle C of G, if {x,y}JEE for every pair of vertices x, y of

distance 2 in C, then C has an even number of edges.

G is an witerval graph if its vertices can be put into 1 -1 correspon-
dence with a set of intervals on the real line, such that two vertices are

connected by an edge of G iff their corresponding intervals have nonempty

intersection.
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LEMMA 5.4, [Gilmore and Hoffman, 64] G is an interval graph iff

G is a chordal graph and G is a comparability graph.
G is a split graph if its vertex set V can be partitioned into sets

Vl. v2 such that E(Vl)==¢ and (Vz,E(vﬂ)) i3 a complete graph.
-

LEMMA 8.5, [Foldes and Hammer, 1977] G is a split graph iff G and

G are chordal graphs.

G=(V,E) is a permutation graph if V= {vl,...,vn} and there is a permutation

o of {1,...,n} such that {vi,vj}EE iFE (-3 (0 ) a7 9 <o.

LEMMA 5.6, [Piueli, Lempel, and Even, 71] G is a permutation graph

iff both G and G are comparability graphs.
By the above Lemmas and Corollary 5.3,

THEOREMS 5.7-11. The recognition problem for each of the graph classes:
chordal géaphs. comparability graphs, interval graphs, split graphs, permuta-

tion graphs are in HiCSYMLOG.

G 1is bipartite if the vertex set V may be partitioned into disjoint

sets V,, V, such that ES{{u,v}luEVl,v€v2}.

LEMMA 5.7, G is hipartite iff G has no cycle of odd length.
By using this characterization Lemma, [Jones, Lien, and Laaser, 76]

show the recognition problem for nonbipartite graphs is Slo equivalent

9
to the complement of UGAP. Thus, by Corollary 5.3,
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THEOREM 5.12. The bipartite graph recognition problem is complete in
HICSYMLOG.

Also, [Jones, Lien, and Laaser, 76] give restricted cases of the Np-
complete problems CHROMATIC NUMBER, CLIQUE COVER, EXACT COVER, HITTING SET,

and show their restricted problems are S-log equivalent to UGAP, and thus

complete in NSYMLOG

5.6 Valence 2 Planarity Testing is in II.CSYMLOG

5.,6.a. Embedding Rotations

Let G= (V,E) be a undirected graph with vertex set V and undirected
edge set E < {{u,v}|distinct u, vEV}. Let D(E) ={(u,v)|{u,v}EE} U
{(v,u) |{u,v} €E} be the set obtained by directing edges of E. Following
(Edmonds, 60] (also see [White, 73]) we define an embedding onto an oriented
surface purely combinatorially; let an embedding »rotation be a set
0= {Ovlvev} where Gv is a cyclic permutation of the directed edges D (E)=
= {(x,y) GD(E)Ix-v} of D(E) departing from vertex v. Intuitively, Ov
gives the clockwise rotation of edges as they are embedded around

vertex v, in a graph with a planar embedding.
Let R(8)CSD(F) XxD(E) be the relation such that e; R(e)e2 iff
directed edge e, departs from the same vertex v that directed edge
e

2 departs from, and e, appears immediately after e in Gv (where

e; is the reverse of edge el). See Figure 1.
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Figure 1.

R(0) is easily shown to be partitioned into a set of cyclic permutations.
Let ¢ be the number of l-connected components of G. Let A(8) be the
number of orbits of R(8). By Euler's formula, the embedding rotation 6
is planar if A(9) - |E| +|V]| =2¢c. 1Intuitively, if 0 is planar and c=1
then the orbits of R(8) ‘are in 1-1 correspondence with the connected
regions of the embedding, with the borders of the regions oriented counter-
clockwise., If 6 is planar and c#1, then c orbits of R 'will be
associated with the exterior regions of the embedding,

By Edmonds' [60]) characterization, the graph G is planar iff it has

a planar embedding rotation.

5.6.b. The Basis Cycles

Let us impose an arbitrary, fixed numbering of the edges E from
1,....|E|. We consider this numbering to be an edge weighting of the
2-connected graph G= (V,E). The greeay algorithm of Section 5.4 constructs

a uniqua minimum spanning forest (V,SFG). For each directed edge (u,v),
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where {u,v}€E- SF., there is a unique directed simple cycle C

(u,v)

containing (u,v) and directed edges derived from er. We call ¢

baste cycle. Let € be the set of all basis cycles. By applying

(u,v) .

Theorem 5.5 we have:

LEMMA 5.8, IIICSYMLOG containg the test: Is edge sequence C in @ ?

5.6.c. The Bridges of G

Let C be a basis cycle in @ of graph G= (V,E). Let a bridge of
C be a maximal edge set BCE - {{u,v}]|(u,v) €c} such that Ve, e, €B,
there is a path p in B containing both e and e but visiting

vertices of C only at the endpoints of p- Given (€, we can construct in

deterministic log-space a graph (this graph is derived from G by substituting
a distinct new vertex v, and edge {u,ve} for each edge e={u,v} of E
such that a vertex v appears in C) whose l-connected components are in 1l-1

correspondence with the bridges of C. Thus, by Lemma 5.8 and Corollary 5.4,

LEMMA 5.9. The bridges of all the cycles of the basic @ may be

recognized in 22CSYMLOG.

5.6.d. Embedding Formulas for ‘Graphs of Valence 3

Suppose we have an oracle for £2CSYMLOG. Given this oracle, we
prrovide a deterministic log Space construction of a CNF® formula FG
which will encode embedding rotations of graph Gs= (V.E) of valence 3.

For each vertex v €V and directed cdges el, ey e3€Dv(E)
departing from v, we have a distinct boolean variable Ov(el,ez.ea).
Let hl be the CNF® formula:
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vg (0, (e)re5185) DO (e 8508))) A (O (o) ,e5,0,) ® -0 (e)050e,))
el,ez,e3€Dv(E)

Note that hl holds just for truth assignments to Ov where there exists

an embedding rotation 0= {SVIVEV} where W€V and el,ez,e3€ DV(E)

departing from v, Ov(el,ez,e3) =true iff e, is cyclically ordered

between e, and e, in 6 .
1l 3 v

Also, for each undirected edge e€E and basis cycle CE€€ not containing

e, we have a boolean variable OUT(C,e). (Intuitively, this variable will be true

iff e is embedded into the exterior of the closed region of the sphere defined by C.)

Let h2 be the CNF@® formula:

Fa
CE¥

(ullv) ' (V'uz)ec

ov((vrul); (Vruz)r (vlua)) : OUT(C.{V,u3})

Y
{v,u, }€E

¢ 31'
distinct v,u_,u

1190 u€Y

Note that hl A h, holds just when an embedding rotation 6 indyced

R e N I

such that foreach v € V and basis cycle CE® containing vertex v, if

(u,,v), (v,u;) are directed edges of C and {v,u3} is any other edge
containing v, then {v,us} is embedded to the exterior of the region defined

by C if Sv cyclically orders (v,uz) between (v,ul) and (v,u3) (see

Figure 2.)
: Uy
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By Lemma 5.8, h2 can be constructed in deterﬁinistic log-space, glven a

HICSYMLOG oracle. Finally, let h3 be the formula

el,e2€E

el,e2 are in the

i same bridge of C

Note that h3 holds just when for each bridge B of any cycle CE€®,
either all edges of B are embedded interior to the region defined by C, or all
edges of B are embedded exterior to the region defined by C. By Lemmas 5.8
and 5.9, h3 may be constructed in deterministic log-space, given an

oracle for ZZCSYMLOG.

Let H_ =h Ahzl\h

G 1 3°

LEMMA 5.10. A graph G of valence 3 is planar iff HG is satisfiable.

Proof. Suppose G is planar. Then by Edmond's characterization, G
has some planar embedding orientation 6. We use 6 to define the truth
values for the O, and OUT variables. They clearly satisfy hye hyy
and h3. Thus we can satisfy HG.

On the other hand: su»pose HG is satisfiable. Let 8 be the
embedding rotation induced by the OV variables, Let A(0) be the number

of orbits of R(#). Now we must show A(G)-—|E|-+|Vl==2 implying by Euler's

formula 0 is planar. TFix the spannhing forest SF==SFG. Suppose we delete
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an edge e€E-SF frém G, so that the resulting graph is G'= (V,E') with
E'=E-{e}. We 'cliaim that if 6' i¢ the resulting embedding rotation, then
A(0) - |E| + || =M6I') -|E'| + IVI Clearly |B'|= IEI -1 80 we must show
A(8') = A(8) 1. |

Let e= {u,v}. be the undirected edge to be deleted from E-SF. Let
myeTy be the orbits of R(£) containing directed edges dl= {u,v),

d,= (v,u) respectively, so d.=d, and d_=d,. We claim now that

1 72 2 1
171 # 112 .
For each i€ {1,2}, let Cy €€ be the unique basis cycle which
i
contains directed edge di' If Tri is a cyclic permutation of C a then

i
Cdi and T do not contain the reverse edge di’ S0 1r1;“n'2.

Otherwise, for each i=1,2 let (xi,yi) be the first edge of ‘ni

di' Let fi be the
directed edge of L immediately preceding .(xi,yi) . By definition of

following di such that (xi,yi) is not in C

orbits, (xi,yi) immediately follows f; in Bx . Note also that fi
i
must be a directed edge in C 3. Let gi be the directed edge of C
i

immediately following fi. Then (xi,yi) is cyclicly ordered between

£

d,
i

; and g, in Gxi. Since h, is satisfied, OUT(Cdi,{xi,yi}) = false
for i=1,2. But since Cd is the reverse of directed cycle Cd ' g;
2 1
appears just before f. in C, and so oOUT(C, ,{x,,y.}) =true.
2 dl dl 2°°2 —_—
However, we claim OUT(Cd {x,y}) = false for all {x,y}€E such
‘ 1
that (x,y) is contained in T, but not C, . This has already been
1

proved for x=x, and y=y,. For any subsequence m' of m contained

on only a éingle bridge of Cd + since h3 is satisfied we have
: 1
ourn(cdl.{x,y})-souT(cd Ax',y'}) for all (x,y) and (x',y') in T™'.
1

Also, if (x,y)n"(x',y') is a subsequence of 7, where 7" is a

1
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is a subsegquence of Cd but (x,y) and (x',y') do not appear in C

d 14
1 1
then since h, is satisfied we have oUT(C, Ax,¥yh = OUT(C,, Ax',y'h.

If (xz,yz) is in Ty then we have ju;t shown OUT(Cdi,{xz,yz})==§§;§g,
contradicting our previous proof then OUT(Cd, {xz,yz})==§£gg. Hence
(xz,yz) is not in T but is by assumption in Tyr SO Trl;lﬂz.

Without loss of generality, let ﬂladlﬂi and "2’d2"5 where
neither ni nor né contain dl or d2. Hence when e 1is deleted from
E ~SF, the orbits "1 and ﬂ2 of R(0) are merged into a single new orbit
niné of R(0'), and no other orbits are modified.

Thus A(8') =A(6) -1, and we have shown A(8) ~ |E| + |v| remains
invariant. We repeat this process (deleting edges not in SF) until we
have only E'=SF. Let ¢ be the number of maximal trees in the spanning
forest SF, c¢ 1is also a number of l-connected components of SF. Then
A(8') =¢, |SF|=n-c and |v]=n. Hence our invariant is A(0) - lg| +|v| =
A(8') - |sP| + |v] = 2c, which implies by Euler's formula the embedding
orientation © is planar. Thus, by Edmonds characterization, G is

planar. o

We have by applying Theorem 5.2 and Lemma 5.10,

THEOREM 5.13. Planarity testing of valence 3 graphs is in H3CSYMLOG.
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5. CONCLUSION

It may be significant that the symmetric complementing machine
introduced in this paper has applications to many combinatorial problems
found in practice, such as spanning trees, k-connectivity and planarity
testing. 1In this case the throretical study of a new machine type led us
to the discovery of new techniques for practical combinatorial algorithm
design. For example, applying our probabilistic decision algorithm for
symmetric games to our proof that valence 3 planarity testing is in H3CSYMLOG,
yields a new probabilistic algorithm for planarity testing; this algorithm
has a quite different structure than any previously known deterministic
planarity testing algorithm such as that of [Hopcroft and Tarjan, 74].
This indicates to us that the field of combinatorial algorithms, as well
as the field of abstract computational complexity‘would benefit by further

study of unusual machine types and their decision algorithms.

Preliminary Work and Acknowledgments

In a preliminary draft of this paper, we 1tilized a restricted type of
alternating machine whose nonalternation next moves are a symmetric
relation. Dexter Kozen pointed out to us that such symmetric alternaticn
machines are too restricted for our intended applications (in particular,
thy do not satisfy a complementation property such as Proposition 2.1).

A succeeding draft of this paper generalized this machine to allow
nonalternation moves to be essentially a cross-product of a symmetric and
a deterministic relation. Joe Halpern informed us of certain difficulties

of this generalization.
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The symmetric complementing machine described in this current draft
satisfies the required complementation property of Propoﬁition 2.1 and
also has efficient decision algorithms if the machine is both space and
complementation bounded. Michael Sipser has also suggested an equivalent
machine; this is a symmetric alternating machine M as we originally
defined (with symmetric nonalternation moves), but with a modified
definition of acceptance:

M accepts (rejects, respectively) from an existential (universal,
respectively) configuration I if there exists a finite computation sequence
I==Il,...,Ij_l,Ij where Il""'Ij-l are existential (universal,
respectively) and I contains an accepting (rejecting, respectively) state
or Ij is universal (existential, respectively) and M accepts (rejects,
respectively) from Ij' Also, M rejects (accepts, respectively) from
existential (universal, respectively) configuration I iff M does not
accept (does not reject) from 1I. Thus Sipser's definitions for acceptance
and rejection of these machines are duals. This is the same as the standard
definition of acceptance of an alternating machine from an existential

configuration, but differs from the standard definition of acceptance from

a universal configuration so as to allow for comglementations of languages.

The author wishes to thank Larry Denenbery, Vassos Hadzilacos, Joe
Halpern, yarry Lewis, A. Prasad, Michael Sipser, and Paul Spirakis for a

careful reading and many useful comments on precliminary drafts of this paper.
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